Representatives From Japan, China, South Korea, and Russia Sign MOU to Conduct Feasibility Studies Concerning Northeast Asia Supergrid

In the early 1980s R. Buckminster Fuller proposed the construction of a global electricity grid as a means of transporting energy from solar and wind generators long distances over the surface of the earth. Fossil hydrocarbons such as coal, oil, and natural gas can relatively easily be transported in pipelines, train cars, and on ocean going vessels, but electricity generated from wind and sunlight cannot be transported by these methods. Such long distance electricity grids represent a very large infrastructure investment which would require unprecedented levels of international economic and political cooperation to bring to fruition.

Renewable Energy World recent published an article about representatives from Japan, China, Korea, and Russia signing a memorandum of understanding (MOU) to conduct technical and economic feasibility studies about creating an electrical grid which would allow large amounts of wind and solar energy to be transmitted between countries in the region of northeast Asia. This MOU arose out of the efforts of Masayoshi Son, a founder, chairman, and chief executive officer (CEO) of Softbank Group, a Japanese multinational telecommunications and internet corporation, who was energized by the Fukushima disaster in Japan to seek for carbon free energy alternatives to nuclear fission.

Whether or not the idea of distributing renewable energy over large geographical areas can be economically effective is not clear. High voltage DC transmission lines can transmit power of long distances with losses of 5% per 2000km and so is a feasible technology for Mongolia to southern China power transmission (The distance from Ulaan Baatar to Hong Kong is 2900km). However, a lot of physical and economic modeling will be required before anyone can be convinced to invest in such a huge transnational infrastructure project. The recent MOU is the first step down the road towards such modeling.